Sunday, June 25, 2017


Tragic events in the UK in the last week, the Grenfell Tower fire, remind us of the dangers of not paying attention to readily identifiable risks, and avoiding action for the sake of relatively trivial cost savings. Although it is an issue on a much much longer fuse, there are many analogies that should apply to the way we approach the threat of climate change. It’s not a simplistic cost benefit analysis. It’s about possible risks to our survival, at least in the numbers and the style to which we are accustomed today. This means a sensible approach to the avoidance of catastrophic risk. It also means understanding the science, in this case some of the dynamics of climate.

Discussions in one of the recent BIEE climate policy seminars[1], taken with some of the references that I then pursued, touched on a number of general issues that I have sometimes touched on before in this blog, or which deserve repeat at regular intervals. One is the gross inadequacy of conventional approaches to justification of climate policy in terms of a traditional cost benefit analysis, sometimes grasped enthusiastically by second rate economists as if it were a raison d’etre of their trade. Another is the notion of “tipping points”, associated with particular catastrophic risks to climatic systems, and sometimes ridiculed by climate sceptics; these are essentially points where a small marginal change in one factor, eg temperature, can completely change the dynamics of a climate system. A third is the problem of finding a rational approach to risk uncertainty, and a fourth is the importance of irreversibility. And finally I discovered, buried in an under-reported section of an IPCC report, a simple illustration of why we might want to take seriously the aspiration, from the Paris agreement, for a 1.5o C global warming target.

Let’s start with the illustration, which is a chart showing the pattern of a likely relationship between temperature. The vertical axis is estimated long term sea level rise associated with a given increase in global temperature to a new equilibrium.

Climate Change 2013: The Physical Science Basis. Chapter 13. Sea Level Change
The graph shows a step change in the long term sea level that starts as the global temperature rises. The step change occurs as global temperatures reach about 1.5o C above pre-industrial levels, and adds about five metres of sea level. It is perhaps not entirely coincidence that this is the aspirational target from Paris COP21.
What the chart shows is actually a physical phenomenon that is very easy to explain. It is the melting of land ice, in this case the Greenland ice cap. Up to that point sea level rise is slower and due to other factors such as thermal expansion or glacier melt, as well as smaller land ice reductions. Once the ice has melted it will not reform quickly or easily even if temperature stabilises or falls slightly. In other words the change is irreversible. The change also changes the climate dynamics and accelerates global warming through a feedback effect, as water absorbs more heat than reflective ice cover.
This scale of sea rise, which threatens many if not most major cities, such as London and Shanghai, and countries such as Bangla Desh, as well as much of our most productive agricultural land, might be considered an existential threat to human survival, at least with a continuing population of 8 to 10 billion. Even if this probability were considered quite small, an assumption that is by no means obvious, it is one that most people, facing such a risk in their daily lives, would take a great deal of trouble to avoid. As the simple physics of heat tells us, melting is not an easily reversible process. Land ice melting on this scale would be a catastrophe from which there would be no easy escape.
This is also an where a traditional cost benefit analysis to public policy breaks down. It fails for a number of reasons.
First there is no means to measure the scale of what the costs of serious disruptive climate change might look like, in terms of forced mass migration of hundreds of millions of people, resource conflict, and the destruction of capital assets. Integrated assessment models of the type quoted in the Stern Review, however well intentioned, are simply not fit for this purpose. Second, cost benefit analysis is actually a very limited technique, suitable for the analysis of small incremental changes. It does not deal adequately with radical choices between wholly different paths to the future. Third, it takes no account of inequality. Hardships for poor people are valued less than minor inconveniences for the wealthy.
But most important of all, it depends on the ability to quantify everything, including uncertainty. This is acceptable when it is possible to assign a known probability distribution, but in this context, and many others, that is completely impossible.
This is a field where other professions have long had a more realistic approach. Dr David Hare, a past-President of the Institute and Faculty of Actuaries, puts it very well.
“Climate change is primarily a risk management problem – one of the most important goals of climate change policy should be to limit the probability of a very bad outcome to an acceptably small value.”
The task then is not to find an arbitrary value for a carbon tax, although such a tax is a useful measure. It is to make sure, above all, that a safe policy objective is achieved. 1.5o C, far from being idealistic, may even prove to have been a dangerously conservative target.

[1] I shall not be specific as these seminars meet under the Chatham House Rule and I prefer to minimise the risk of accidentally ascribing an opinion to an identifiable individual.

Monday, June 19, 2017


Stunned by the range and scale of extraordinary and dramatic events in the last few weeks, this blog has remained very quiet and is only now starting to recover. It will remain quiet and slightly less frequent over most of the summer as the author is also working on some substantial papers about low carbon issues.


But it’s a good time to review quickly some recent events, in terms of their possible implications for energy and climate policy. Some of the themes may deserve a fuller treatment in due course. Some reflect on earlier postings.

Trump. The Trump comedy machine trundles on. Monty Python meets House of Cards is one popular characterisation of recent events (and not just with Trump or the US). But, as I commented earlier in relation to the Paris agreement, the damage of US withdrawal can be exaggerated. It will be limited both by growing appreciation within the US of climate issues, and by the increasing extent to which the rest of the world will simply ignore the US in the framing of its own policies.

The Middle East. Probably of more geopolitical significance are the strange diplomatic initiatives in relation to Saudi Arabia and Quatar. At the very least these risk adding fuel to the flames of conflicts that are already very terrible and will pose problems well beyond their own borders. These are very well explored by David Gardner in the FT.

The Saudis have long so mismanaged their energy resources as to have been forced to consider their own austerity programme, and on current prognostications for oil demand and prices their long term prospects must force some very substantial changes, not least in the very wasteful consumption of energy that has characterised much of the Middle East. We have long thought of the region mainly in terms of its role as a low cost intra-marginal oil producer, but consumption growth has been huge, and it deserves to be taken much more seriously in the broader context of how global adjustments and low carbon policies can be developed. We have to hope this will not be hindered by ill-considered diplomatic and military adventures on all sides.

UK. Bank of England forces financial institution stress tests in relation to climate change. This is another sign that widespread assumption of a low carbon future is gaining traction. Part of this is concern with the liabilities of insurance companies, in relation to some of the bigger risks anticipated from climate change, eg coastal flooding. But another of the Bank’s concerns is with the position of funds that have too much invested in companies that are going to lose out heavily if the world turns even more decisively against fossil fuels. Companies most at risk include coal, especially as the prospects for carbon capture appear to recede. Again this is an issue flagged in an early posting on this site.

And the UK election and Brexit. Direct implications for climate policy seem limited. There is no doubting the multiple close correlations and affinities between the fundamentalist free marketeers, the hard right Brexiters, the Trump camp and fossil fuel lobbies in the US, and refusal to accept the implications of climate science. Politicians like Redwood, Lawson, Trump himself, Farage and UKIP, Rees Mogg and Grayling, together with the small band of pro-Brexit economists, all fit the mould, and the correlations have been noted in earlier postings. But with too many internal battles over Brexit, and the relaxation of austerity,  any threats to UK climate policy, its 2050 legally binding targets or its commitment to Paris seem unlikely, for a host of reasons.

Where do we go on liberalised markets? Both major parties went into the election on a platform that included the prospect of price controls for the energy companies. This deserves a deeper analysis, perhaps, but surely marks the death knell of the liberalised market approach in the UK. The UK government, and most other European governments, intervene extensively in the energy sector.